Chemistry Letters 1998 535

Intramolecular Exciplex Formation and Metal Ion Recognition in 1-(1-Naphthalenecarboxy)-n-(p-substituted benzenecarboxy)oxaalkanes

Jun Kawakami,* Hirohito Sata, Kohjiro Ebina, and Shoei Ito
Department of Materials Science and Technology, Faculty of Science and Technology, Hirosaki University,
Bunkyo-cho 3, Hirosaki, Aomori 036-8561

(Received February 18, 1998; CL-980115)

1-(1-naphthalenecarboxy) - n - (p -cyano benzenecarboxy) oxaalkanes (1NPnCN, n=1-6) as fluorescent sensors by exciplex emission for metal ions were synthesized. we investigated the relationship between the length of the polyether chain and the metal ion recognition of 1NPnCN (n=1-6). Changes in the fluorescence spectra of 1NPnCN (n=1-4) were not observed by the addition of calcium and barium salts. However, the spectra of 1NPnCN (n=5,6) were changed.

Many kinds of crown ether type macrocyclic compounds have been used for analytical application such as chemical sensor 1 and spectrophotometries. 2 In the application for fluorimetry, fluorescent reagents, which have two aromatic hydrocarbons at both terminals of a linear polyether as an analogue of a crown ether, also have been used.3 In 1996, we synthesized 1,n-Bis(1-naphthalenecarboxy)oxaalkanes (1NPnN, n = 1 - 6) as fluorescent sensors by excimer emission for metal ions and investigated the relationship between the length of the polyether chain and metal ion recognition of 1NPnN.4 When alkali metal salts were added in an acetonitrile solution of 1NPnN (n = 1 - 6), the shape and intensity of the fluorescence spectra were not changed, and when alkaline earth metal salts were added, changes in the fluorescence spectra of 1NPnN (n = 1-3) were also not observed. However, the spectra of 1NPnN (n = 4,5,6) were changed by the addition of calcium and barium salts.⁴ In 1NPnN (n = 4,5,6), the complex formation constants (K) obtained by fluorescent changes were 3.63 - 4.82 (= log K). We attempted to construct excellent fluorescent chemosensors for ion recognition, better than 1NPnN (n = 4,5,6).

1NPnN(n = 1 - 6) $1NP4X(X = H, Cl, CF_3, CN, NO_2)$

1NPnCN(n = 1 - 6)

We synthesized a D-A system having 1-naphthoic acid and p-substituted benzoic acid at both terminals of the linear polyether. First, we investigated substitution effects by means of 1-(1-naphthalenecarboxy) - 14 - (p-substituted benzenecarboxy) oxa alkanes (1NP4X, X = H, Cl, CF3, CN, NO2). Next, we investigated the relationship between the length of the polyether chain and the metal ion recognition of 1-(1-naphthalenecarboxy) -n-(p-cyanobenzenecarboxy)oxaalkanes (1NPnCN, n = 1 - 6) observed exciplex emission. 1NP4X (X = H, Cl, CF3, CN, NO2) and 1NPnCN (n = 1 - 6) were prepared by the same

methods as those of **1NPnN** (n = 1 - 6)⁴, which was the condensation between 1-naphthoic acid or p-substituted benzoic acid and the corresponding polyethleneglycols using N, N-dicyclohexyl carbodiimide (DCC).

It is known that electron transfer and exciplex formation are possible for a system with a negative value of the free energy of electron transfer (ΔGET), given by the Rehm-Weller equation⁵:

 ΔG_{ET} = IPD - EAA - E₀₀ - C + ΔG_{solv} (1) where IPD is the ionization potential of a donor, EAA is the electron affinity of an acceptor, E₀₀ is the excitation energy of the excited molecule, and C and ΔG_{solv} are the Coulombic energy and solvation of ion pairs, respectively. A fairly accurate value of ΔG_{ET} can be calculated with the equation⁶

$$\Delta G_{ET}(eV) = E(D/D+) - E(A-/A) - E_{00} - [e^{2/\epsilon}\rho] - [(e^{2/r})(1 - 1/\epsilon)]$$
 (2)

using the oxidation and reduction potentials [E(D/D+) and E(A-/A) of a donor and an acceptor separated by ρ with average individual ionic radii r in a solvent with dielectric constant ε when the redox potentials of the donor and the acceptor were determined in acetonitrile solution ($\varepsilon = 36.2$). In order to evaluate the free energy of electron transfer in the 1NP4X series, the oxidation potential of naphthalene and the reduction potentials of methyl p-substituted benzoate were compared. The oxidation potential of naphthalene [E(D/D+)] was 1.26 V vs Ag/Ag+ in acetonitrile at room temperature. The reduction potentials [E(A-(A)] of methyl benzoate carrying p-H, p-Cl, p-CF3, p-CN and p-NO₂ were -2.63, -2.47, -2.19, -2.11 and -1.97 V vs Ag/Ag+ in acetonitrile at room temperature, respectively.⁸ If we assume that the donor and acceptor parts of 1NPnX in the folded conformation are separated by a distance between 4 Å to form exciplex, AGET is calculated from equation (2) (ionic radii are assumed to be 4.3 Å) using the 0-0 transition energy for naphthalene E00 = 3.98eV determined from the absorption and fluorescence spectra. As shown Table 1, ΔGET decreases as the electronegativity of the p-substitutents of the acceptor benzoate increases. Combination of naphthalene (D) with p-H, p-Cl, p-CF3, p-CN and p-NO2 benzoate (A) gives negative Δ GET, indicating that both exciplex formation and electron transfer are possible for these systems.9

The absorption and excitation spectra of 1NP4X (X = H, Cl, CF3, CN, NO2) are essentially identical with equimolar mixtures of Ethyl 1-naphtoate and the corresponding methyl p-substituted benzoates. The ground state intramolecular interaction, such as charge transfer (CT) between D and A, was excluded by the absence of new band at longer wavelength for 1NP4X (X = H, Cl, CF3, CN, NO2).

Fluorescence quantum yields (Φ) in acetonitrile obtained relative to naphthalene are reported in Table 2, in which Φ_{total} is the quantum yield for total emission, Φ_{LE} is that of a locally excited emission and Φ_{EX} is that of the exciplex emission.

536 Chemistry Letters 1998

Table 1. Free energy of electron transfer $(\Delta G_{ET})^a$ between naphthalene (Naph) and *p*-substituted benzoate (*p*-H, *p*-Cl, *p*-CF₃, *p*-CN, *p*-NO₂) in acetonitrile

		$\frac{\Delta G_{ET} / \text{ eV mol}^{-1}}{\rho = 4 \text{ Å}}$	
D - A	$\sigma_p^{\ a}$		
Naph - p-H	0.00	- 0.19	
Naph - p-Cl	0.23	- 0.35	
Naph - p-CF ₃	0.54	- 0.63	
Naph - p-CN	0.66	- 0.71	
Naph - p-NO ₂	0.78	- 0.85	

a Hammett's values for p-substituents.

Table 2. Fluorescence Quantum Yields of 1NP4X (X = H, Cl, CF₃, CN, NO₂) in acetonitrile at 25 $^{\circ}$ C

1NP4X							
Φ\ X	H	Cl	CF ₃	CN	NO ₂		
Φ_{total}	0.25	0.24	0.24	0.075	0.062		
Φ_{LE}	0.25	0.24	0.24	0.060	0.062		
Φ_{EX}	0.00	0.00	0.00	0.015	0.000		

 Φ_{total} decreases as the electronegativity of the *p*-substituent of the acceptor benzoate increases. (Table 2)

1NP4CN and **1NP4NO2**, with the most negative ΔGET , show the most efficient quenching. In **1NP4CN**, exciplex emission is observed, but not observed in **1NP4X** (X = H, Cl, CF₃, NO₂).

We investigated the complexing ability of 1NPnCN (n = 1-6) with Ca2+ and Ba2+ in order to compare that of 1NPnN, because, in 1NPnCN, it is easy to detect exciplex emission. Measurements of fluorescence spectra were carried out in an acetonitrile solution of the 1NPnCN (1.0 x 10⁻⁵ mol dm⁻³) at room temperature, and Ca(SCN)2 and Ba(ClO4)2 were added to the solution. To prevent a nonlinearity of the fluorescence intensity, isosbestic points (295 nm) of the absorption spectra of 1NPnCN were chosen as excitation wavelength, respectively. When calcium and barium salts were added in the acetonitrile solution of 1NPnCN (n = 1 - 4), shape and intensity of the fluorescence spectra were not changed. However, the spectra of 1NPnCN (n = 5 and 6) were changed. To study the complexation behavior of 1NPnCN (n = 5 and 6) with Ca²⁺ and Ba2+, the measurements of the fluorescence were carried out in detail. For example, the fluorescence spectra of 1NP5CN in the presence of several concentrations of Ba2+ are shown in Figure 1. The peak intensity of the naphthalene monomer (368 nm) was decreased by the addition of Ca2+ and Ba2+; respectively. The peak intensity of the exciplex (the longer wavelength region) was also decreased by the addition of Ca²⁺. However, when Ba²⁺ was added, the peak intensity of exciplex emission was increased. The complex formation constants (K) and the fluorescence intensities of the complexes (IML) were evaluated from these intensities, using equation 1.10 T fluorescence intensities at 368 nm¹¹ were used for calculation.

 $(I_f - I_f, min) / (I_f, max - I_f) = K[M]$ (1) As shown in Table 3, the order of the formation constants (K) of 1NP5CN for Ca²⁺ and Ba²⁺ is Ba²⁺ > Ca²⁺, and of 1NP6CN for Ca²⁺ and Ba²⁺ is Ca²⁺ > Ba²⁺.

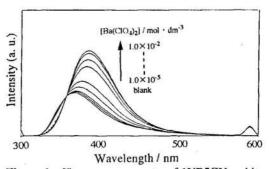


Figure 1. Fluorescence spectra of 1NP5CN and its Ba^{2+} complexes, as excited at 295 nm. $[1NP5CN] = 1 \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3} \text{ in MeCN at 25}^{\circ} \text{C}.$

Table 3. The complex formation constants (K) of **1NPnCN** (n = 5 and 6)

	log I	log K		
	1NP5CN	1NP6CN		
Ca ⁺	5.54	5.46		
Ba ⁺	5.65	4.57		

Solvent: acetonitrile at 25 °C. [1NPnCN (n = 5,6)] = 1.0×10^{-5} mol • dm⁻³.

These results were the same as the results of 1NPnN (n = 4 - 6). However, the value of the complex formation constants (K) for 1NPnCN was greater than that for $1NPnN.^4$ These results suggested that 1NPnCN (n = 5 and 6) were excellent fluorescent chemosensors for ion recognition, better than 1NPnN (n = 4,5,6).

We reported here preliminary results of our studies on the relationship between the length of the polyether chain and the metal ion recognition of 1NPnCN. Further studies are in progress.

References and Notes

- R. D. Tsingarelli, L. K. Shpigun, V. V. Samoshin, O. A. Zelyonkina, M. E. Zapolsky, N. S. Zefirov, and Y. A. Zolotov, Analyst, 117, 853 (1992).
- M. Takagi and H. Nakamura, J. Coord. Chem., 15, 53 (1983).
- a) Y. Kakizawa, T. Akita, and H. Nakamura, Chem. Lett., 1993, 1671.
 b) R. Tahara, K. Hasebe, and H. Nakamura, Chem. Lett., 1995, 753.
 C) C. -H. Tung and Y. -M. Wang, J. Am. Chem. Soc., 112, 6322 (1990).
- J. Kawakami, Y. Komai, and S. Ito, Chem. Lett., 1996, 617.
- D. Rehm and A. Weller, Isr. J. Chem., 8, 259 (1970).
- 6 Y. Zhu and G. B. Schuster, J. Am. Chem. Soc., 115, 2190 (1993).
- 7 J. Kawakami and M. Iwamura, J. Phys. Org. Chem., 7, 31 (1994).
 - G. Kavarnos and N. Turro, Chem. Rev., 86, 401 (1986).
- a) K. Kikuchi, Y. Takahashi, T. Katagiri, T. Niwa, M. Hoshi and T. Miyashi, Chem. Phys. Lett., 180, 403 (1991). b) K. Kikuchi, M. Hoshi, T. Niwa, Y. Takahashi, and T. Miyashi, J. Phys. Chem., 95, 38 (1991).
- S. Fery-Forgues, M. Le Bris, J. Guette, and B. Valeur, J. Phys. Chem., 92, 6233 (1988).
- 368 nm is the peak of the naphthalene monomer emission.